Compressed Sensing

Compressed sensing

Compressed sensing is a signal processing technique that allows for efficient acquisition and reconstruction of signals by finding solutions to underdetermined linear systems. It exploits the sparsity of a signal to recover it from fewer samples than required by the Nyquist–Shannon sampling theorem. Recovery is possible when two conditions are met: sparsity and incoherence.

3 courses cover this concept

CS 294 - The Mathematics of Information and Data

UC Berkeley

Fall 2013

This course investigates the mathematical principles behind data and information analysis. It brings together concepts from statistics, optimization, and computer science, with a focus on large deviation inequalities, and convex analysis. It's tailored towards advanced graduate students who wish to incorporate these theories into their research.

No concepts data

+ 20 more concepts

CS 168: The Modern Algorithmic Toolbox

Stanford University

Spring 2022

CS 168 provides a comprehensive introduction to modern algorithm concepts, covering hashing, dimension reduction, programming, gradient descent, and regression. It emphasizes both theoretical understanding and practical application, with each topic complemented by a mini-project. It's suitable for those who have taken CS107 and CS161.

No concepts data

+ 57 more concepts

CS 265 / CME 309 Randomized Algorithms and Probabilistic Analysis

Stanford University

Fall 2022

This course dives into the use of randomness in algorithms and data structures, emphasizing the theoretical foundations of probabilistic analysis. Topics range from tail bounds, Markov chains, to randomized algorithms. The concepts are applied to machine learning, networking, and systems. Prerequisites indicate intermediate-level understanding required.

No concepts data

+ 37 more concepts