Q-learning is a model-free reinforcement learning algorithm used to find an optimal policy for any finite Markov decision process. It does not require a model of the environment and can handle stochastic transitions and rewards without adaptations. The "Q" in Q-learning refers to the expected rewards for an action taken in a given state.
Stanford University
Winter 2023
This course offers a solid introduction to the field of reinforcement learning (RL), covering challenges, approaches, and deep RL. Prerequisites include Python proficiency and foundations of machine learning. Students will be able to implement RL algorithms and evaluate them.
No concepts data
+ 11 more conceptsStanford University
Autumn 2022-2023
Stanford's CS 221 course teaches foundational principles and practical implementation of AI systems. It covers machine learning, game playing, constraint satisfaction, graphical models, and logic. A rigorous course requiring solid foundational skills in programming, math, and probability.
No concepts data
+ 88 more conceptsUC Berkeley
Fall 2008
This advanced course focuses on the applications of machine learning in the robotics and control field. It covers a wide range of topics including Markov Decision Processes, control theories, estimation methodologies, and robotics principles. Recommended for graduate students.
No concepts data
+ 27 more conceptsCarnegie Mellon University
Spring 2018
A comprehensive exploration of machine learning theories and practical algorithms. Covers a broad spectrum of topics like decision tree learning, neural networks, statistical learning, and reinforcement learning. Encourages hands-on learning via programming assignments.
No concepts data
+ 55 more concepts