Transfer learning is a machine learning technique that involves using knowledge gained from one task to improve performance on a related task. For example, knowledge learned in recognizing cars can be applied to recognizing trucks in image classification. This approach has the potential to enhance learning efficiency by reusing information from previous tasks.
UC Berkeley
Fall 2022
An advanced course dealing with deep networks in the fields of computer vision, language technology, robotics, and control. It delves into the themes of deep learning, model families, and real-world applications. A strong mathematical background in calculus, linear algebra, probability, optimization, and statistical learning is necessary.
No concepts data
+ 14 more conceptsStanford University
Fall 2022
An in-depth course focused on building neural networks and leading successful machine learning projects. It covers Convolutional Networks, RNNs, LSTM, Adam, Dropout, BatchNorm, Xavier/He initialization, and more. Students are expected to have basic computer science skills, probability theory knowledge, and linear algebra familiarity.
No concepts data
+ 35 more conceptsStanford University
Fall 2022
This course emphasizes leveraging shared structures in multiple tasks to enhance learning efficiency in deep learning. It provides a thorough understanding of multi-task and meta-learning algorithms with a focus on topics like self-supervised pre-training, few-shot learning, and lifelong learning. Prerequisites include an introductory machine learning course. The course is designed for graduate-level students.
No concepts data
+ 17 more conceptsStanford University
Spring 2022
This is a deep-dive into the details of deep learning architectures for visual recognition tasks. The course provides students with the ability to implement, train their own neural networks and understand state-of-the-art computer vision research. It requires Python proficiency and familiarity with calculus, linear algebra, probability, and statistics.
No concepts data
+ 55 more concepts