Winter 2022
University of Washington
This course provides a comprehensive overview of Natural Language Processing (NLP), including core components like text classification, machine translation, and syntax analysis. It offers two project types: implementation problem-solving for CSE 447, and reproducing experiments from recent NLP papers for CSE 517.
No data.
No data.
Natural language processing (NLP) seeks to endow computers with the ability to intelligently process human language. NLP components are used in conversational agents and other systems that engage in dialogue with humans, automatic translation between human languages, automatic answering of questions using large text collections, the extraction of structured information from text, tools that help human authors, and many, many more. This course will teach you the fundamental ideas used in key NLP components. It is organized into several “greatest hits” topics, each with a more-or-less self-contained lecture and associated readings, problems, and implementation exercises.
The courses are similar in breadth and use the same lecture content. The projects are quite different; 447’s project is a predefined implementation problem that gives teams freedom in developing a solution. It is designed to encourage iterative improvement and an understanding of inherent tradeoffs in building an NLP system. 517’s project is more research-oriented; it asks teams to reproduce experiments in recently published NLP papers. Teams have great flexibility in the choice of a paper to reproduce.
Additionally, there will be differences in the assignments.