Spring 2023
Stanford University
This course focuses on data mining and machine learning algorithms for large scale data analysis. The emphasis is on parallel algorithms with tools like MapReduce and Spark. Topics include frequent itemsets, locality sensitive hashing, clustering, link analysis, and large-scale supervised machine learning. Familiarity with Java, Python, basic probability theory, linear algebra, and algorithmic analysis is required.
The course will discuss data mining and machine learning algorithms for analyzing very large amounts of data. The emphasis will be on MapReduce and Spark as tools for creating parallel algorithms that can process very large amounts of data.
Topics include: Frequent itemsets and Association rules, Near Neighbor Search in High Dimensional Data, Locality Sensitive Hashing (LSH), Dimensionality reduction, Recommendation Systems, Clustering, Link Analysis, Large-scale Supervised Machine Learning, Data streams, Mining the Web for Structured Data, Web Advertising.
Students are expected to have the following background:
No data.
The following text is useful, but not required. It can be downloaded for free, or purchased from Cambridge University Press.