Winter 2023
Stanford University
This comprehensive course covers various machine learning principles from supervised, unsupervised to reinforcement learning. Topics also touch on neural networks, support vector machines, bias-variance tradeoffs, and many real-world applications. It requires a background in computer science, probability, multivariable calculus, and linear algebra.
This course provides a broad introduction to machine learning and statistical pattern recognition. Topics include: supervised learning (generative/discriminative learning, parametric/non-parametric learning, neural networks, support vector machines); unsupervised learning (clustering, dimensionality reduction, kernel methods); learning theory (bias/variance tradeoffs, practical advice); reinforcement learning and adaptive control. The course will also discuss recent applications of machine learning, such as to robotic control, data mining, autonomous navigation, bioinformatics, speech recognition, and text and web data processing.
Students are expected to have the following background:
No data.
No data
Lecture slides and notes available at Syllabus
Videos of autumn 2018 offering available on YouTube
Final project information available at CS229 Final Project Information
No other materials available